Capsaicin Suppresses Cell Proliferation, Induces Cell Cycle Arrest and ROS Production in Bladder Cancer Cells through FOXO3a-Mediated Pathways.
نویسندگان
چکیده
Capsaicin (CAP), a highly selective agonist for transient receptor potential vanilloid type 1 (TRPV1), has been widely reported to exhibit anti-oxidant, anti-inflammation and anticancer activities. Currently, several therapeutic approaches for bladder cancer (BCa) are available, but accompanied by unfavorable outcomes. Previous studies reported a potential clinical effect of CAP to prevent BCa tumorigenesis. However, its underlying molecular mechanism still remains unknown. Our transcriptome analysis suggested a close link among calcium signaling pathway, cell cycle regulation, ROS metabolism and FOXO signaling pathway in BCa. In this study, several experiments were performed to investigate the effects of CAP on BCa cells (5637 and T24) and NOD/SCID mice. Our results showed that CAP could suppress BCa tumorigenesis by inhibiting its proliferation both in vitro and in vivo. Moreover, CAP induced cell cycle arrest at G0/G1 phase and ROS production. Importantly, our studies revealed a strong increase of FOXO3a after treatment with CAP. Furthermore, we observed no significant alteration of apoptosis by CAP, whereas Catalase and SOD2 were considerably upregulated, which could clear ROS and protect against cell death. Thus, our results suggested that CAP could inhibit viability and tumorigenesis of BCa possibly via FOXO3a-mediated pathways.
منابع مشابه
Knockdown of SIRT1 Suppresses Bladder Cancer Cell Proliferation and Migration and Induces Cell Cycle Arrest and Antioxidant Response through FOXO3a-Mediated Pathways
Bladder cancer (BCa) is one of the most common tumors, but its underlying mechanism has not been fully clarified. Our transcriptome analysis suggested a close link of Sirtuins, Peroxisome Proliferator-Activated Receptor (PPAR), cell cycle regulation, reactive oxygen species (ROS) metabolism, and Forkhead Box Class O (FOXO) signaling pathway in BCa. SIRT1 is a key member of Sirtuins, playing imp...
متن کاملCapsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress.
Obesity is a global health problem that requires the utmost attention. Apart from other factors the trans-differentiation of mesenchymal stem cells (MSCs) into adipocytes is an added detrimental factor causing the intensification of obesity. The main objective of this present study is to analyse whether capsaicin is capable of inhibiting the differentiation of BMSCs to adipocytes. Bone marrow m...
متن کاملQuercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
Objective(s):The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its ...
متن کاملChenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells
Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...
متن کاملChenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells
Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2016